		INTERNAL ASSIGNMENT - 1
Course	BCA	Discrete Mathematics
Year	2	
Total Marks:	100	

Q.1. Write answers for all the questions below. (20 marks each - Word limit - 500)
A. Let $A=\{k, l, m, n\}$. Let $R=\{(k, k),(l, l),(m, m),(k, l),(k, m),(l, m),(m, n),(n, k)\}$; $S=\{(n, k),(n, l),(n, m),(m, k),(m, l),(l, K),(k, k)\}$. Find the composition (a) ROR (b) SOS with diagram.
B. Describe the types of representation of relation with example.
C. i) A cricket-eleven is to be selected from amongst 10 batsmen, 8 bowlers and 2 wicketkeepers so as to include at least 5 batsmen, 4 bowlers and exactly 1 wicketkeeper. In how many ways can be done ? ii) Find the value of $+10 \mathrm{C} 4+11 \mathrm{C} 5+12 \mathrm{C} 6$
D. Using law of algebra of propositions, show that---
(i) $\left(p^{\wedge} q\right) \vee p \equiv p(i i)\left(p^{\wedge} q\right) \vee\left(p^{\wedge}-q\right) \equiv p(i i i)(p \Rightarrow q)^{\wedge}(r=>q) \equiv(p \vee r)=>q$
E. Establish the equivalences---
(i) $p^{\wedge}(-q \vee q)$ and p (ii) $-(p<=>q) \equiv\left(p^{\wedge} q\right) \vee\left(-p^{\wedge} q\right)(i i i) p=>(q \vee r) \equiv(p=>q) \vee(p=>r)$

		INTERNAL ASSIGNMENT-2
Course	BCA	Discrete Mathematics
Year	2	
Total Marks:	100	

Q.1. Write answers for all the questions below. (20 marks each - Word limit - 500)
A. Define Eulerian graph. Show that a non-empty connected graph is Eulerian if and only if all its vertices are of even degree.
B. Establish the equivalences---
(i) $p^{\wedge}(-q \vee q)$ and $p(i i)-(p<=>q) \equiv\left(p^{\wedge} q\right) \vee\left(-p^{\wedge} q\right)(i i i) p=>(q \vee r) \equiv(p=>q) \vee(p=>r)$
C. Show that set of N Natural numbers is a semi group under the operation $x^{*} y=m a x\{x, y\}$, is a monoid.
D. (a) Prove that the following is a group under multiplication modulo 11 \{1,2,3,4,5,9\}
(b) Write the laws of the algebra of operation of sets.
E. Find the truth table of the following propositions---
(i) $-(p \vee q) \vee\left(-p^{\wedge}-q\right)$ (ii) $\left(p^{\wedge} q\right) \vee\left(-p^{\wedge} q\right) \vee\left(p^{\wedge}-q\right) \vee\left(-p^{\wedge}-q\right)(i i i) p^{\wedge}(q \vee r)$ (iv) $-p \vee q=-q$

